Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Dmitry V. Albov,* Eugenia I. Turubanova, Victor B. Rybakov, Eugene V. Babaev and Leonid A. Aslanov

Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation

Correspondence e-mail: albov@biocryst.phys.msu.su

Key indicators

Single-crystal X-ray study $T=293~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.004~\mathrm{\mathring{A}}$ R factor = 0.045 wR factor = 0.132 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-(4-Bromophenyl)-8-cyano-5,7-dimethyl-oxazolo[3,2-a]pyridin-1-ylium perchlorate

The title compound, $C_{16}H_{12}BrN_2O^+\cdot ClO_4^-$, was synthesized, and characterized by 1H NMR and X-ray diffraction techniques.

Received 22 June 2004 Accepted 30 June 2004 Online 9 July 2004

Comment

We have described earlier the crystal structure of *N*-(4-bromophenacyl)-4,6-dimethyl-2-oxo-1,2-dihydropyridine-2-carbonitrile, (1) (Albov *et al.*, 2004). Now, we report here the synthesis and crystal structure of the title compound, (2).

An analysis of bond lengths in the oxazolopyridinium ring system of (2) (Fig. 1) shows its aromaticity. The nine-membered bicyclic system is planar to within 0.018 (2) Å; atoms C61, C71, C91 and C10 lie in the same plane. The benzene ring is planar to within 0.007 (2) Å, with atoms Br1 and C2 in the same plane. The dihedral angle between the oxazolopyridinium and benzene fragments is 2.62 (7)°, indicating that there is considerable conjugation between these aromatic fragments.

Experimental

For the preparation of (2), compound (1) (0.5 g, 1.448 mmol) was dissolved in 20 ml of sulfuric acid and the reaction mixture was allowed to stand for 5 min. It was then poured into a mixture of 100 ml of water and 5 ml of a 70% solution of perchloric acid. The resulting precipitate was filtered off, washed with water and dried in air (yield 0.51 g, 82%; m.p. 512–514 K). The compound was recrystallized from acetonitrile. 1 H NMR (DMSO- d_6 , 400 MHz, p.p.m.): 2.86 (s, 3H, 5-CH₃), 3.05 (s, 3H, 5-CH₃), 8.0 (s, 1H, 6-CH), 7.82–7.84, 7.88–8.02 (dd, 4H, Ar), 9.6 (s, 1H, 3-CH).

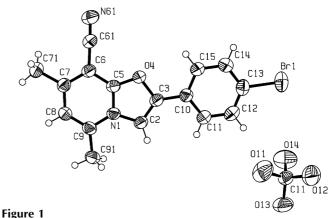
Crystal data

 $C_{16}H_{12}BrN_2O^+\cdot ClO_4^-$ Z=2 $M_r = 427.64$ $D_r = 1.706 \text{ Mg m}^{-3}$ Triclinic, $P\overline{1}$ Cu $K\alpha$ radiation a = 7.150 (3) Å Cell parameters from 25 b = 7.800 (2) Åreflections $\theta = 32-35^{\circ}$ c = 15.481 (5) Å $\mu = 5.13 \text{ mm}^{-1}$ $\alpha = 90.68 (2)^{\circ}$ $\beta = 102.62 (3)^{\circ}$ T = 293 (2) K $\gamma = 98.48 (3)^{\circ}$ Prism, yellow $V = 832.4 (5) \text{ Å}^3$ $0.30 \times 0.30 \times 0.30 \text{ mm}$

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Data collection


Enraf-Nonius CAD-4	$\theta_{\mathrm{max}} = 74.8^{\circ}$
diffractometer	$h = -8 \rightarrow 8$
Non-profiled ω scans	$k = -9 \rightarrow 9$
Absorption correction: none	$l = 0 \rightarrow 19$
3288 measured reflections	1 standard reflection
3288 independent reflections	frequency: 60 min
2825 reflections with $I > 2\sigma(I)$	intensity decay: 2%

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0738P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	+ 0.5105P
$wR(F^2) = 0.132$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
3288 reflections	$\Delta \rho_{\text{max}} = 0.35 \text{ e Å}^{-3}$
228 parameters	$\Delta \rho_{\min} = -0.47 \text{ e Å}^{-3}$
H-atom parameters constrained	

Table 1Selected geometric parameters (Å, °).

N1-C5	
N1-C9 1.383 (4) C10-C11 1.39 N1-C2 1.398 (4) C10-C15 1.39 C2-C3 1.338 (4) C11-C12 1.37 C3-O4 1.405 (3) C12-C13 1.37 C3-C10 1.450 (4) C13-C14 1.38 O4-C5 1.328 (4) C14-C15 1.37 C5-C6 1.390 (4) C61-N61 1.14 C6-C7 1.396 (4) C11-O14 1.40 C6-C61 1.426 (4) C11-O13 1.41 C7-C8 1.406 (4) C11-O11 1.41 C7-C71 1.494 (4) C11-O12 1.41 C5-N1-C9 122.0 (3) C8-C9-C91 126 C5-N1-C2 107.8 (2) N1-C9-C91 116 C9-N1-C2 130.2 (2) C11-C10-C15 118	0 (4)
N1-C2	6 (4)
C2-C3 1.338 (4) C11-C12 1.37 C3-O4 1.405 (3) C12-C13 1.37 C3-C10 1.450 (4) C13-C14 1.38 O4-C5 1.328 (4) C14-C15 1.37 C5-C6 1.390 (4) C61-N61 1.14 C6-C7 1.396 (4) C11-O14 1.40 C6-C61 1.426 (4) C11-O13 1.41 C7-C8 1.406 (4) C11-O11 1.41 C7-C71 1.494 (4) C11-O12 1.41 C5-N1-C9 122.0 (3) C8-C9-C91 126. C5-N1-C2 107.8 (2) N1-C9-C91 116. C9-N1-C2 130.2 (2) C11-C10-C15 118.	3 (4)
C3-O4 1.405 (3) C12-C13 1.37 C3-C10 1.450 (4) C13-C14 1.38 O4-C5 1.328 (4) C14-C15 1.37 C5-C6 1.390 (4) C61-N61 1.14 C6-C7 1.396 (4) C11-O14 1.40 C6-C61 1.426 (4) C11-O13 1.41 C7-C8 1.406 (4) C11-O11 1.41 C7-C71 1.494 (4) C11-O12 1.41 C5-N1-C9 122.0 (3) C8-C9-C91 126. C5-N1-C2 107.8 (2) N1-C9-C91 116. C9-N1-C2 130.2 (2) C11-C10-C15 118.	4 (4)
C3-C10	3 (5)
O4-C5 1.328 (4) C14-C15 1.37 C5-C6 1.390 (4) C61-N61 1.14 C6-C7 1.396 (4) Cl1-Ol4 1.40 C6-C61 1.426 (4) Cl1-Ol3 1.41 C7-C8 1.406 (4) Cl1-Ol1 1.41 C7-C71 1.494 (4) Cl1-Ol2 1.41 C5-N1-C9 122.0 (3) C8-C9-C91 126. C5-N1-C2 107.8 (2) N1-C9-C91 116. C9-N1-C2 130.2 (2) C11-C10-C15 118.	5 (5)
C5-C6 1.390 (4) C61-N61 1.14 C6-C7 1.396 (4) Cl1-O14 1.40 C6-C61 1.426 (4) Cl1-O13 1.41 C7-C8 1.406 (4) Cl1-O11 1.41 C7-C71 1.494 (4) Cl1-O12 1.41 C5-N1-C9 122.0 (3) C8-C9-C91 126. C5-N1-C2 107.8 (2) N1-C9-C91 116. C9-N1-C2 130.2 (2) C11-C10-C15 118.	35 (5)
C6-C7 1.396 (4) Cl1-O14 1.40 C6-C61 1.426 (4) Cl1-O13 1.41 C7-C8 1.406 (4) Cl1-O11 1.41 C7-C71 1.494 (4) Cl1-O12 1.41 C5-N1-C9 122.0 (3) C8-C9-C91 126. C5-N1-C2 107.8 (2) N1-C9-C91 116. C9-N1-C2 130.2 (2) C11-C10-C15 118.	3 (5)
C6-C61 1.426 (4) Cl1-Ol3 1.41 C7-C8 1.406 (4) Cl1-Ol1 1.41 C7-C71 1.494 (4) Cl1-Ol2 1.41 C5-N1-C9 122.0 (3) C8-C9-C91 126. C5-N1-C2 107.8 (2) N1-C9-C91 116. C9-N1-C2 130.2 (2) C11-C10-C15 118.	0(4)
C7-C8 1.406 (4) C11-O11 1.41 C7-C71 1.494 (4) C11-O12 1.41 C5-N1-C9 122.0 (3) C8-C9-C91 126. C5-N1-C2 107.8 (2) N1-C9-C91 116. C9-N1-C2 130.2 (2) C11-C10-C15 118.	8 (3)
C7-C71 1.494 (4) Cl1-Ol2 1.41 C5-N1-C9 122.0 (3) C8-C9-C91 126. C5-N1-C2 107.8 (2) N1-C9-C91 116. C9-N1-C2 130.2 (2) C11-C10-C15 118.	4(3)
C5-N1-C9 122.0 (3) C8-C9-C91 126. C5-N1-C2 107.8 (2) N1-C9-C91 116. C9-N1-C2 130.2 (2) C11-C10-C15 118.	5 (3)
C5-N1-C2 107.8 (2) N1-C9-C91 116. C9-N1-C2 130.2 (2) C11-C10-C15 118.	8 (3)
C5-N1-C2 107.8 (2) N1-C9-C91 116. C9-N1-C2 130.2 (2) C11-C10-C15 118.	
C9-N1-C2 130.2 (2) C11-C10-C15 118.	.6 (3)
	.9 (3)
	9 (3)
C3-C2-N1 106.7 (2) C11-C10-C3 119.	4 (3)
C2-C3-O4 108.8 (3) C15-C10-C3 121.	7 (3)
C2-C3-C10 133.9 (3) C12-C11-C10 120.	.6 (3)
O4-C3-C10 117.3 (2) C11-C12-C13 119.	5 (3)
C5-O4-C3 106.7 (2) C12-C13-C14 121.	.0 (3)
O4-C5-N1 110.0 (2) C12-C13-Br1 119.	4 (3)
O4-C5-C6 127.7 (3) C14-C13-Br1 119.	.6 (3)
N1-C5-C6 122.3 (3) C15-C14-C13 119.	4(3)
C5-C6-C7 117.4 (3) C14-C15-C10 120.	.5 (3)
C5-C6-C61 119.8 (3) N61-C61-C6 178.	.0(4)
C7-C6-C61 122.8 (3) O14-CL1-O13 110.	2(2)
C6-C7-C8 118.7 (3) O14-CL1-O11 107.	.2(2)
C6-C7-C71 120.4 (3) O13-CL1-O11 109.	.8 (2)
C8-C7-C71 120.9 (3) O14-CL1-O12 109.	.8 (3)
C9-C8-C7 123.1 (3) O13-CL1-O12 109.	9 (2)
C8-C9-N1 116.5 (3) O11-CL1-O12 109.	.9 (3)

ORTEP-3 (Farrugia, 1997) plot of (2), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

H atoms were included in calculated positions (C-H = 0.93–0.96 Å) and refined as riding, with $U_{\rm iso}({\rm H})$ = 1.5 $U_{\rm eq}({\rm methyl}~{\rm C})$ or 1.2 $U_{\rm eq}({\rm C})$ (others).

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (Allen, 2002) (project No. 02-07-90322).

References

Albov, D. V., Turubanova, E. I., Rybakov, V. B., Babaev, E. V. & Aslanov, L. A. (2004). *Acta Cryst.* E**60**, o1222–o1223.

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Enraf-Nonius (1994). *CAD-4 EXPRESS*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.